Abstract #176

# 176
REGULATORY ROLE OF MIR-20A DURING BOVINE OOCYTE MATURATION
E. Andreas1, D. Salilew-Wondim1, F. Rings3, E. Held3, M. Hoelker1,3, C. Neuhoff1, E. Tholen1, K. Schellander1,2, D. Tesfaye*1,2, 1Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany;, 2Center of Integrated Dairy Research, University of Bonn, Bonn, Germany;, 3Teaching & Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Koenigswinter, Germany.

The role of microRNA in oocyte maturation is mostly associated with optimal turnover of the accumulated maternal transcripts during their growth to allow maturation. MiR-20a is a member of the miR-17–92 cluster, which has been found to be differentially expressed in bovine granulosa cells derived from preovulatory dominant and subordinate follicles. Our recent study showed that miR-20a is involved in the regulation of granulosa cell proliferation, differentiation, and progesterone synthesis by targeting PTEN and BMPR2 genes. Here, we aimed to investigate the role of miR-20a in the bovine oocyte maturation processes. For this, cumulus-oocyte complexes (COC) were aspirated from small antral follicles (2–8 mm in diameter) and cultured in groups of 50 in 400 µL of maturation media (TCM-199 media supplemented with 12% oestrus cow serum and 10 µg/ml Follitropin®) at 39°C in a humidified atmosphere with 5% (vol/vol) CO2 in the air for 22 h. The cumulus cells and oocytes before (germinal vesicle) and after maturation (metaphase II) were mechanically separated in 0.1% hyaluronidase (in TCM-199 media). To study whether the presence of cumulus cells or oocyte has an impact on the miR-20a expression, we cultured oocytectomized cumulus cells and oocytes with and without their companion cells. Moreover, COC were co-cultured with miR-20a mimic, inhibitor, or corresponding controls to investigate the role of this miRNA in oocyte maturation. The total RNA from cumulus cells and oocytes was extracted using miRNeasy® mini kit (Qiagen GmbH, Hilden, Germany). Total RNA from respective samples was reverse transcribed for mRNA and microRNA expression analysis. Quantitative expression analysis was performed using StepOnePlus™ System (Applied Biosystems, Foster City, CA, USA) and subsequent data were analysed using a comparative cycle threshold method. The progesterone released in the spent media was measured using progesterone enzyme-linked immunosorbent assay kit (ENZO Life Sciences GmbH, Loerrach, Germany). Here, we found that miR-20a expression in cumulus cells increased (P < 0.05) during oocyte maturation. Conversely, miR-20a expression in metaphase II stage oocytes was significantly lower (P < 0.001) compared with the germinal vesicle stage. The absence of oocyte cytoplasm resulted in reduced miR-20a expression in cumulus cells. On the other hand, the absent of cumulus cells increased miR-20a expression in oocytes. The miR-20a expression revealed that the microRNA transduction is restricted in the cumulus cells. The overexpression of miR-20a increased oocyte maturation rate (P < 0.05) by 4.8% (as determined by extrusion of the polar body) and the expression of oocyte maturation-related genes (INHBA, MAPK1, PTGS2, PTX3, and EGFR). The progesterone released in spent media of COC co-cultured with miR-20a mimic and inhibitor showed increasing (P = 0.0936) and decreasing (P = 0.0993) trends, respectively. In this study, we also found that miR-20a modulation altered the expression of PTEN and BMPR2 in cumulus cells. In conclusion, the modulation of miR-20a expression in cumulus cells regulates the oocyte maturation and partially involved in the progesterone synthesis by fine-tuning the expression of PTEN and BMPR2 genes.