Abstract #90

Section: Embryo Culture
Session: Embryo Culture
Format: Poster
Location: Rio Exhibit Hall B
# 90
M. Mahajan*1, D. Nagoorvali1, N. Rawat1, M. S. Chauhan1, R. S. Manik1, S. K. Singla1, P. Palta1, M. K. Singh1, 1ICAR-National Dairy Research Institute, Karnal, Haryana, India.

Co-culture of pre-implantation embryos with oviducal epithelial cells mimics the in vivo conditions, thus, playing a crucial role in embryo metabolism and gene expression and finally supporting embryonic developmental competence in several ways. Hence, the objective of the present study was to evaluate the effect of goat oviducal epithelial cells (GOEC) co-culture on goat parthenogenetic embryonic development, quality, and relative mRNA abundance of genes related to developmental competence and oxidative stress. The GOEC were obtained from goat oviducts by squeezing and thorough washing with TCM-199 + 10% fetal bovine serum. Goat cumulus–oocyte complexes were collected from slaughterhouse ovaries and matured in TCM-199 + 10% fetal bovine serum supplemented with 5 μg/mL of FSH, 10 μg/mL of LH, and 1 μg/mL of β-oestradiol for 27 h in CO2 incubator with 5% CO2 and at 38.5°C with >95% RH. In vitro matured cumulus–oocyte complexes were denuded and activated with 5 μm calcium ionophore and 2 mm 6-DMAP. Following activation, embryos were co-cultured with and without GOEC (control) in mCR2aa media. The blastocyst development rate was significantly (P < 0.05) higher (23.00 ± 1.15% v. 17.33 ± 1.45%) in the media cultured with GOEC than in control. The total cell number of blastocysts (n = 4) was also found to be significantly more (167.25 ± 17.51 v. 110.25 ± 12.02) than that of control (P < 0.05). However, the apoptotic index (3.76 ± 0.23% v. 7.97 ± 1.99%) was not significantly different in both groups. Further, RNA was isolated from both groups (20 each) of blastocysts on Day 8, and cDNA was prepared. Analysis by qPCR revealed that the relative mRNA abundance of development related genes, i.e., VEGF, BMP4, and CCNB1, showed significantly high (P < 0.05) expression, whereas the expression of CRABP1 was significantly low (P < 0.05) in GOEC co-culture than control. Oxidative stress related genes GPX-1 and SOD2 had comparable expression in both the culture systems, whereas a nonsignificant (P < 0.05) increase in expression of PRDX1 was observed in GOEC co-culture group. In conclusion, co-culture of embryos with GOEC in the simple culture media like mCR2aa helps in improving developmental competence and quality of parthenogenetic embryos.