Abstract #188

# 188
A. Lange-Consiglio*1, C. Perrini1, P. Esposti1, F. Cremonesi1, 1Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Milan, Italy.

The in vitro maturation of canine oocyte is problematic because it is difficult to reproduce the oviducal microenvironment where the in vivo maturation occurs. Because cells are able to communicate with each other by paracrine action, oviducal cells could be in vitro cultivated to obtain the conditioned medium (CM) consisting of soluble factors and microvesicles (MV), which represent a carrier for nonsoluble molecules including microRNA. The aim of the present work was to investigate the effect of the addition of CM or MV, secreted by oviducal cells, to the canine in vitro maturation medium. To generate CM, cells from oviducts of 3 animals in late oestrus were cultured for 5 days at 38.5°C in a humidified atmosphere of 5% CO2. Supernatants were collected, pooled, centrifuged at 2500 × g, and stored at –80°C. Microvesicles were obtained by ultracentrifugation of CM at 100,000 × g for 1 h at 4°C and measured for concentration and size by a Nanosight instrument. Ovaries were obtained from 50 healthy domestic bitches (1–4 years old) of different breeds that underwent ovariectomy regardless of the oestrous cycle. Cumulus-oocyte complexes were released by slicing the ovarian cortex with a scalpel blade, and only Grade 1 cumulus-oocyte complexes (darkly granulated cytoplasm and surrounded by 3 or more compact cumulus cell layers) 110 to 120 µm in diameter were selected for culture. Maturation was performed at 38.5°C in a humidified atmosphere of 5% CO2 and 5% of O2 in bi-phasic systems: 24 h in SOF with 5.0 μg/mL of LH followed by 48 h in SOF supplemented with 10% of oestrous bitch serum and 10% CM or 50, 75, 100, or 150 × 106 MV/mL labelled with PKH-26. Control was the same medium without CM or MV. Oocytes were observed under a fluorescent microscope to detect metaphase II (MII), by Hoechst staining, and the incorporation of MV. Statistical analysis was performed by chi-square test. Results show that canine oviducal cells secreted MV of 234 ± 23 nm in size, underling that these MV fall within the shedding vesicles category. The incorporation of labelled MV occurred at first in cumulus cells, at 48 h of maturation, and then, at 72 h, in oocyte cytoplasm. These MV had a positive effect on maturation rate (MII) at the concentration of 75 and 100 × 106 MV/mL compared with CM and control (20.34 and 21.82 v. 9.09 and 3.95%, respectively). The concentration of 150 × 106 MV/mL provided only 9.26% of MII. To understand the role of MV, we assessed the expression of 3 microRNA (miRNA-30b, miR-375, and miR-503) that are involved in some key pathways (WNT, MAPK, ERbB, and TGFβ) regulating follicular development and meiotic resumption. The lower rate of MII with the higher concentration of MV is possibly due to the high level of miR-375, which recent literature shows to suppress the TGFβ pathway, leading to impaired oocyte maturation. In conclusion, the oviducal MV, or specific microRNA, are involved in cellular trafficking during oocyte maturation, and their possible use in vitro could facilitate the exploitation of canine reproductive biotechnologies.